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the feasibility of applying feed-forward neural
networks to estimate training site vegetation
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networks are a suitable tool for predicting
training site vegetation coverage probability.
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1 Introduction

Background

The United States Army is responsible for managing over 12 million acres of
land.  The Army’s land management objective is to maintain realistic military
training and testing environments while promoting land stewardship.  To accom-
plish this objective, the U.S. Army Land Condition Trend Analysis (LCTA)
program was developed at the U.S. Army Construction Engineering Research
Laboratories (USACERL) under the sponsorship of the U.S. Army Engineering
and Housing Support Center (USAEHSC) as a means to inventory and monitor
natural resources on military installations.  LCTA uses standard methods to
collect, analyze, and report natural resources data (Diersing, Shaw, and Tazik
1992) and is the Army’s standard for land inventory and monitoring (Technical
Note [TN] 420-74-3).  Over 50 military installations and training areas in the
United States and Germany have begun or plan to implement the LCTA
program.  LCTA data sets currently exist for more than 40 installations and
contain from 1 to 10 years of monitoring data.  Lands inventoried as part of the
LCTA program include Army Materiel Command (AMC), Forces Command
(FORSCOM), Training and Doctrine Command (TRADOC), and National Guard
Bureau installations.  More than 75% of the Army’s land base is represented by
LCTA data (Shaw and Kowalski 1996).

A central objective of the LCTA program is assessing how various site
characteristics, both biotic and abiotic, respond to varying levels of disturbance.
This project addresses part of this objective by estimating vegetation cover
probabilities based on past disturbance history and site characteristics.
Estimating vegetation cover is of primary interest since cover affects soil erosion
and is the principal erosion factor that can be influenced by land managers.  In
fact, many of the carrying capacity models developed for the Army are erosion-
based models (Diersing et al 1988, Shaw and Diersing 1989, U.S. Army Concepts
Analysis Agency 1996, Anderson et al 1996, Warren and Bagley 1992).  For land
managers, cover and erosion levels are important in the decisionmaking process
for scheduling military training on an installation or deciding when to begin
reclamation procedures at a given site.  As an example, if after prolonged distur-
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bance a site has a higher probability of having adequate vegetation cover, then
one may conclude that such a site can be used with relatively higher intensity.
Also, if a site has a higher likelihood of recovering quickly by itself when
compared to other sites, its recovery may not require reclamation efforts as
intensive as other sites.

Objectives

Currently, there are two constraints to using LCTA data for estimating
vegetation cover probabilities.  First, only short time series data are frequently
available for analysis.  Second, except in some special cases, most installations
do not have data that distinguish the exact cause of ground disturbance or
distinguish the extent of each type of disturbance.  Given these two constraints,
it is not clear which procedures are most appropriate for estimating vegetation
cover probabilities.  The successful application of artificial neural networks
(ANN) in pattern recognition and function approximation has prompted this test
to determine whether feed-forward ANN can provide accurate probability
estimates under these circumstances.

The specific objective of this project is to test and verify that feed-forward ANN
are a valid approach when using LCTA data to predict vegetation cover
probabilities.  The question is: Can next years’ vegetative coverage probability be
adequately estimated by inputting historic vegetative cover and disturbance
information along with next years’ expected disturbance?  If the proposed
approach is indeed appropriate, careful modeling design will allow managers to
predict the probability of future training site vegetation coverage based on past
coverage.

Approach

A literature survey was conducted to identify artificial neural network analysis
techniques applicable for processing LCTA data.  Information from the survey
was then used to process a selected installation’s LCTA data.  Logistic models
were also developed to compare the performance of the neural network models
with more traditional analysis techniques.  Finally, results from the LCTA data
processing were summarized and recommendations made.
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Mode of Technology Transfer

Information from this study is intended to be incorporated into evolving Army
land-based carrying capacity models such as the Army Training and Testing
Area Carrying Capacity (ATTACC) model.
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2 Data

Data used in this project was obtained from Fort Sill, Oklahoma, and was
collected during the peak of the vegetation growing seasons in 1989, 1990, 1991,
and 1992.  Standard LCTA core plot data collection methodology was used (Tazik
et al 1992).  Core plots were allocated across an installation using a stratified
random sampling design based on unique combinations of satellite imagery
landcover (reflectance) categories and soil series (Warren et al 1990).  Each
unique landcover/soil combination is recognized as a separate category, with the
number of plots assigned to each category proportional to the land area included
in each.  For example, a landcover/soil category covering 10 percent of the
installation would receive approximately 10 percent of the plots.  This procedure
was intended to ensure that the data collected are representative of the
installation as a whole.

Once a plot is located in the field, a 100-meter (m) long line transect is set on
each plot.  Along this transect, 100 points are sampled at 1-m intervals starting
at the 0.5-m point.  At each sample point, information is collected regarding the
presence and type of surface disturbance, ground cover, and canopy cover.  A
point is considered disturbed if there is physical evidence of disruption of the soil
surface or if the vegetation has been obviously crushed.  Although LCTA
recognizes five types of surface disturbance (NONE, PASS, TRAIL, ROAD and
OTHER), only two are considered in this project: no disturbance (NONE) and
disturbance due to a random vehicle pass (PASS).  If vegetation is present at a
sample point, the species is recorded and the point is considered to have a
ground cover.  If other soil-maintaining material (i.e., rock) is present, the soil-
maintaining material is recorded and the point is also considered to have cover.
If a sample point has any aerial vegetation cover above the point, the plant
species and height are recorded and the point is considered to have canopy cover.
Aerial vegetation cover is recorded at 0.1-m intervals from 0.1-m to 2.0 m, and at
0.5-m intervals from 2.0-m to 8.5 m.  The top-most aerial recordings at each
point were summed together to classify the transect’s plant community.  The
plant community is a hierarchical classification scheme based on the transect’s
vegetation physiognomic structure, and categorizes a transect by overall life
form (grass, forb, shrub, or tree), life form type (annual or perennial species), and
general aerial cover density (sparse, open, dense, closed) (Anderson et al 1995).
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It was assumed in this project that sampled points along a line transect are
spatially independent; that is, whether a previous sampled point has vegetation
cover has no effect in deciding whether the next point has cover.  A total of
15,158 data points were included in the data set.  Combinations of the data
include (1) ground cover points with NONE or PASS disturbance, (2) canopy
cover points with NONE or PASS disturbance, (3) no ground cover points with
NONE or PASS disturbance, and (4) no canopy cover points with NONE or PASS
disturbance.

Preliminary data analysis identified the seven most relevant variables in
determining vegetation cover probability for the year 1991.  These seven
variables include: disturbance history (NONE or PASS) in 1989 and 1990,
vegetation cover (covered or not covered) in 1989 and 1990, disturbance in year
1991, the transect plot’s plant community classification, and the vegetation
cover’s life form.  Thus, each training pattern consisted of seven input variables
and one target output variable.  In this project, ground and canopy vegetation
cover were modeled separately, with the training based on transect point data.
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3 Training Algorithm and Network
Structure

Due to the imbalanced representation of the training data, widely used gradient-
based methods (i.e., back-propagation and its variants) failed to produce useful
results.  All the gradient-based training methods actually settled down at a local
minimum that corresponds to classifying all noncovered points as covered points;
that is, all the noncovered were filtered out as data noise.  An adaptive and
directional random optimization method (ADRO) was developed for this project
as an alternative training method.  The algorithm can be regarded as a hybrid
between gradient-based and random search optimization methods.  It has a self-
adjusting variance term, a directional component, and can conduct backward
searches.  In this project, fixed structure, single hidden layer feed-forward
networks with one or two hidden units were employed.

The ADRO algorithm adopted was first developed as a random optimization
procedure (Matyas 1965).  The algorithm was then modified by adding a
backward search process and an adaptive variance component (Solis and Wets
1981).  The algorithm was then introduced as a training algorithm for finding
the global error minimum for feed-forward neural networks (Baba 1989).  This
algorithm not only has the capability to locate the global error minimum, but it
is also fast.

Like simulated annealing, the ADRO procedure also uses a variance term to
determine the size of weight changes (delta-weights).  However, the ADRO
procedure differs from simulated annealing in one significant way; the ADRO
algorithm conducts searches not only in a forward manner (i.e., adding delta-
weights to the current weight vector), it can also conduct backward searches (i.e.,
subtracting delta-weights from the current weight vector) if the forward search
is unable to lower the training error.  If both forward and backward searches are
unable to improve the training error, the weight vector remains unchanged and a
new set of delta-weights will be generated.

The second unique feature of the ADRO algorithm is its variance term.  The
variance of this algorithm is controlled by the results of the search process, and
depending on the progress, it can go either up or down.  In this implementation,
the original rule for variance adjustment was adopted (Solis and Wets 1981).  If
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each of the five successive forward search steps (or three backward search steps)
is able to lower the training error, the variance for the next step will be doubled
from its current value.  If, however, each of the five consecutive forward steps (or
three backward search steps) fails to lower the training error, the current
variance will be halved.  The variance remains unchanged otherwise.  This
practice encourages larger steps to be taken when the search is going well, and
forces smaller steps to be taken if the search is not going well.  An added
advantage of this self-adjusting process is that the variance term will approach
zero rapidly if there is no improvement in training.  This feature allows
unnecessary training to be avoided, especially at the beginning of a training
session.

The third unique feature of the ADRO algorithm is its directional component.
This component is similar to a memory or momentum term.  It allows the
algorithm to search along the directions where it has been successful, and
accelerates the search process.  In this application, the rules for adjusting the
directional component reported in Baba (1989) were adopted.  Since the ADRO
algorithm is still a random optimization procedure, it can escape local minima
and locate the global minima.  The backward search, the self-adjusting variance,
and the directional component together make the ADRO a fast random search
procedure.

In the original algorithm, the delta-weights are generated by either a Gaussian
or a uniform distribution.  For speed enhancement in this implementation, the
new steps are generated by a Cauchy distribution similar to the fast simulated
annealing (Szu and Hartley 1987).  Since the variance of a Cauchy distribution is
unbounded, occasionally large steps in the right directions will be taken, which
will improve the training speed.  Using some benchmark test data sets in an
artificial neural network (e.g., multi-bits parity problem), we concluded that the
modified algorithm is at least as fast as the original algorithm.

Because of the inherent parallelism of the algorithm and because the problems of
interest typically involve a large number of observations, a parallel version of the
algorithm was implemented on a Connection Machine CM-2 computer using CM
FORTRAN under field-wise (or PARIS) mode.  The implementation is a training
set parallel implementation where each training point occupies a processor, and
the weights are broadcast to each processor when needed (Singer 1990).  Under
this implementation, the majority of the computationally intensive tasks will be
done on CM-2.  Because inter-processor communication is kept to a minimum,
this implementation is probably the fastest one for this algorithm on a
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Connection Machine.

All the networks used in this project were standard 3-layer feed forward
networks.  The input layer consisted of seven units; the output layer had only
one unit, and the outputs from this unit were regarded as the conditional
vegetation coverage probabilities for the current year estimated by the trained
networks.  For each training set, two networks were trained, one with one
hidden unit and the other with two hidden units.  The purpose was to investigate
whether a more complex network would provide better probability estimation.
Thus, there were 10 weights (including the weights for the bias unit) in each of
the one-hidden-unit networks (referred to as ADRO-1 networks hereafter) and 19
weights for the two-hidden-unit networks (ADRO-2 hereafter).  The error
function for both networks was a squared-error function, and the activation
function for all process units was a logistic function.  The best initial variances
were determined through trial and error.

The training procedure had three stopping rules:

1.  The maximum training cycle was set at 10,000.  Training stopped if
this limit was exceeded.

2.  Training stopped if the error improvement for 10 consecutive cycles
was smaller than 1.0E-3.

3.  Training stopped and the network was considered to have accom-
plished the approximation if the training produced an error smaller than
the pre-defined error criterion.
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4 Performance Comparison

Logistic models were developed to compare to the performances of the ANN
models.  The logistics model used the same input and output variables as the
neural network models.  The logistic regression procedure of the SAS statistical
software (PROC LOGIST) was used to obtain the parameter estimates of the
logistic models.

The main goodness-of-fit statistic used in this project is the χ2 statistic (Snedecor
and Cochran 1980).  In order to use this statistic, validation data (i.e., data for
predicting the coverage probability for 1992) were cross-classified according to
the seven input variables.  Then, for each combination, an average coverage ratio
was estimated and treated as the long-term coverage probability for that
combination.  For χ2 to be effective, each combination has to have at least five
observations in it.  Therefore, in this project, combinations with less than five
observations were removed from the validation data sets.  Thus, the validating
data set for ground coverage has 86 combinations, and the validation data set for
aerial coverage has 74 combinations.

The χ2 goodness-of-fit statistic is defined as:

χ2
2

1

= −

=
∑ ( )E O

E
i i

ii

n

where Oi and Ei are the observed and estimated, respectively, number of covered
transect points in combination i; and Ei = Oi × Pi where Pi is the estimated
probability of vegetation coverage from the ANN or the logistic models for
combination i.
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5 Conclusions and Recommendations

For both types of vegetation covers, training stopped for ANN models after
roughly 5,000 iterations once good initial variances were located.  In all
instances, network training stopped due to a lack of significant improvement in
lowering the training error.  It should be noted that for ANN models, the best
initial variances were in the order of 10-5, which corresponded to a set of weights
with small values.  This set of small initial weights produced outputs around 0.5
for each input pattern.  In a certain respect, one can regard that initially the
ANN models treated every pattern as having a coverage probability of 0.5 (i.e., a
form of noninformative prior).  Through repeated training, the ANN models
gradually adjusted the weights to reflect the probability of coverage until the
systems settled to some solutions.  The residue errors as well as the validation
results for the ANN models are given in Table 1.

Both logistic models were able to converge.  Most of the asymptotic 95%
confidence intervals for the parameter estimates for logistic models did not
contain 0, which indicates that the logistic models were statistically valid.  The
residue errors as well as the validation results for the logistic model are given in
Table 1.

As shown in Table 1, ANN models had a better fit to the training data than the
corresponding logistic models for both types of vegetation covers.  The
improvement of ANN models over the corresponding logistic model was
substantial.  The ANN models were particularly effective in predicting the
canopy cover.  This result is likely due to the fact that most of the training data
had canopy cover in 1991.  As expected, ADRO-2 models fit the training data
better than the ADRO-1 models, though the improvement was less significant
than anticipated.

Table 1.  Performances of various models for predicting vegetation coverage probability.

Ground Vegetation Coverage Canopy Vegetation Coverage

Logistic ADRO-1 ADRO-2 Logistic ADRO-1 ADRO-2

Residue error 1756.7 1474.5 1471.6 266.4 221.1 281.0

χ2   739.7   57.3  54.9 89.5 6.3 2.5
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The main reason that the ADRO algorithm worked with these data sets, while
back-propagation failed, is attributed to the way network weights were adjusted.
For the ADRO algorithm, the overall training error is lowered through random
weight adjustments regardless of the errors of individual patterns.  Thus, if a set
of weight changes can lower the overall training error, the weight changes are
adopted; otherwise the algorithm retains the current weights and generates
another set of weight changes.  In contrast, gradient-based methods reduce the
overall training error through the minimization of each individual pattern error.
For training sets with roughly balanced representation, this strategy works well.
For imbalanced training sets, the main contribution of each weight change will
be due to the corrections of the dominant pattern.  The weight adjustments will
continue until the dominant pattern is correctly classified for all cases.
Consequently, the rare patterns will be filtered out as data noises.  This result
will occur regardless of what the initial weights are.

The main purpose of this project was to test whether a random optimization
procedure can be used to model vegetation cover probabilities on military
installations given manmade impacts and natural variability in vegetation cover.
In general, ANN models had a better fit to the training data than the
corresponding logistic models.  However, since the data in this project have a
short time sequence, results from the project should be interpreted cautiously.  It
should be noted that traditional statistical methods might be more suitable for
this problem as further data accumulate.  It will be of great interest to determine
whether the ADRO algorithm will continue to perform better than the logistic
model as long-term time sequence data becomes available.  Ultimately though,
data consistency through time is imperative for any type of time-dependent
modeling.  Even short to mid-term data is crucial given our lack of knowledge on
the relationships between manmade impacts and the natural resources.



16 USACERL TR 98/83

References

Anderson, A., L. Chenkins, L. Winters, R. Hunt, C. Couvillon, D. McFerren, S. Sekscienski, T. Shirnia,

and P. Sydelko, “Army Training and Testing Area Carrying Capacity (ATTACC) and Evaluation of

Land Value Study (ELVS),” pp 8-17, in: Integrated Training Area Management Workshop, 5th

Annual ITAM/LRAM Workshop, LaCrosse, WI, August, 1996.

Anderson, A.B., W.L. Sprouse, D.G. Kowalski, and P.J. Guertin. 1995. LCTA Users Interface, Users

Manual Version 1.0, ADP Report 95/24/ADA300797 (USACERL August 1995) 156 pp.

Baba, N., “A new approach for finding the global minimum of error function of neural networks,” Neural

Network, vol 2 (1989) pp 367-373.

Diersing, V.E., R.B. Shaw, and D.J. Tazik, “U.S. Army Land Condition-Trend Analysis (LCTA) Program,”

Environmental Management, vol 16 (1992) pp 405-414.

Diersing, V.E., R.B. Shaw, S.D. Warren, and E.W. Novak, “Users Guide for Estimating Allowable Use of

Tracked Vehicles on Non-wooded Military Training Lands,” Journal of Soil and Water

Conservation, vol 43 (1988) pp 191-195.

Matyas, J., “Random optimization,” Automation and Remote Control, vol. 26 (1965) pp 246-253.

Shaw, R.B., and V.E. Diersing, “Allowable Use Estimates for Tracked Vehicular Training on Pinon

Canyon Maneuver Site, Colorado, US,” Environmental Management, vol 13 (1989) pp 773-782.

Shaw, R.B., and D.G. Kowalski, U.S. Army Lands: A National Survey, The Center for Ecological

Management of Military Lands CEMML TPS 96-1 (Colorado State University, Fort Collins, CO,

1996).

Singer, A., Implementations of artificial neural networks on the Connection Machine, Thinking Machine

Corporation, Technical Report RL90-2 (Thinking Machine Corporation, Cambridge,

Massachusetts, 1990).

Snedecor, G.W., and W.G. Cochran, Statistical Methods (Iowa State University Press, Ames, IA, 1980).



USACERL TR-98/83 17

This publication was reproduced on recycled paper.

Solis, F.J. and J.B. Wets, “Minimization by random search techniques,” Mathematics of Operations

Research, vol. 6 (1981) pp 19-30.

Szu, H., and R. Hartley, “Fast simulated annealing,” Physics Letter (Series A), vol 122 (1987) pp 157-

162.

Tazik, D.J., S.D. Warren, V.E. Diersing, R.B. Shaw, R.J. Brozka, C.F. Bagley, and W.R. Whitworth, U.S.

Army Land Condition-Trend Analysis (LCTA) Plot Inventory Field Methods, TR N-

92/03/ADA247931 (USACERL, February 1992).

Technical Note [TN] 420-74-3, Army Land Inventory and Monitoring Procedures on Military

Installations (U.S. Army Engineering and Housing Support Center [USAEHSC], Fort Belvoir, VA,

1990).

U.S. Army Concepts Analysis Agency, Evaluation of Land Value Study (ELVS), Study Report CAA-SR-

96-5 (U.S. Army Concepts Analysis Agency, 1996).

Warren, S.D., and C.F. Bagley, “SPOT Imagery and GIS in Support of Military Land Management,”

Geocarto International, vol 1 (1992) pp 35-43.

Warren, S.D., M.O. Johnson, W.D. Goran, and V.E. Diersing, "An Automated, Objective Procedure for

Selecting Representative Field Sample Sites," Photogrammetric Engineering and Remote

Sensing, vol 56, no. 3 (1990) pp 333-335.


	Foreword
	Contents
	Introduction
	Background
	Objectives
	Approach
	Mode of Technology Transfer

	Data
	Training Algorithm and Network Structure
	Performance Comparison
	Conclusions and Recommendations
	References

